

Electrical Engineering Department Prelab3
Student Name: abed.hmeadan
Id:1161306
Instructor: Dr. Muhammad jubran section:1
Date:29/9/2018

Part A: Step response of First-order RC circuit
For the circuit of Figure 5.8 :

1. Calculate VC (t) using the general solution formula, show calculation of time constant (τ).
```
\(\mathrm{VC}(\mathrm{t})=\mathrm{V}(\mathrm{inf})+\left((\mathrm{V}(0)-\mathrm{V}(\mathrm{inf})) \mathrm{e}^{\wedge}(-\mathrm{t} / \mathrm{toe})\right.\)
\(\mathrm{V}(0)=0\)
\(\mathrm{V}(\mathrm{inf})=6 \mathrm{~V}\)
Toe \(=(\) Rth \(*\) C \()=\left(10 \mathrm{~K}^{*} 0.1^{*} 10^{\wedge}-6\right)=1 \mathrm{~ms}\)
\(\mathrm{VC}(\mathrm{t})=6\left(1-\mathrm{e}^{\wedge}(-1000 \mathrm{t})\right)\)
```

2. Use PSPICE to do transient analysis of the circuit. Show $\mathrm{VC}(\mathrm{t})$ and use cursors to measure time constant ($\boldsymbol{\tau}$).

$\mathrm{V}($ toe $)=0.63 * \operatorname{Vmax}=3.75$
Toe $=1 \mathrm{~ms}$
3. For the same circuit show $\operatorname{VR}(\mathrm{t})$ using a differential voltage marker, and use cursors to measure time constant ($\boldsymbol{\tau}$).

Part B: Step response of First-order RL circuit For the circuit of Figure 5.10:

Figure 5.10

$$
\begin{aligned}
& V L(t)=V(\text { inf })+\left((V(0)-V(\text { inf })) e^{\wedge}(-t / \text { toe })\right. \\
& V(\text { inf })=0
\end{aligned}
$$

$\mathrm{V}(0)=\mathrm{Vin} \max =6 \mathrm{~V}$
Toe $=L / R=1 \mathrm{~ms}$
$V L(t)=6^{*} e^{\wedge}\left(-1000^{*} t\right)$
2. Use PSPICE to do transient analysis of the circuit. Show $\mathrm{VL}(\mathrm{t})$ and use cursors to measure time constant (τ).

V (toe) $=0.37^{*} \mathrm{~V} \max =2.22$
3.For the same circuit show $\operatorname{VR}(\mathrm{t})$ using a differential voltage marker, and use cursors to measure time constant ($\boldsymbol{\tau}$).

Part C: Step response of second-order Series RLC circuit
For the circuit of Figure 5.12:

Figure 5.12
$\alpha=\mathrm{R} /(2 * \mathrm{~L})=20000$
$W 0=1 /(L C)^{\wedge} 0.5=6324$
$\alpha^{\wedge} 2>\mathrm{w}^{\wedge}{ }^{\wedge} 2$

The system is over damped
S1,2 = -($\boldsymbol{\alpha})+-\left(\boldsymbol{\alpha}^{\wedge} 2-W 0^{\wedge} 2\right)^{\wedge} .5$
S1 = - 1026
$S 2=-38974$
$V c(t)=3+A e^{\wedge}-1026 t+B e^{\wedge}-38974 t$

2. Calculate the critical resistance RC that will result in equal roots ($\mathrm{S} 1=\mathrm{S} 2$ = - ${ }^{\text {? }}$) and write an expression for $\mathrm{VC}(\mathrm{t})$. Use PSPICE to do transient analysis of the circuit and show $\mathrm{VC}(\mathrm{t})$.
$W 0^{\wedge} 2=\boldsymbol{\alpha}^{\wedge} 2$
$1 /(L C)=R c^{\wedge} 2 / 4 L^{\wedge} 2$
$\mathrm{R}^{\wedge} 2=4 * \mathrm{~L} / \mathrm{C}=3.2 \mathrm{Kohm}$
$\boldsymbol{\alpha}=\mathrm{Rc} / 2 \mathrm{~L}=6400$
$\mathrm{Vc}(\mathrm{t})=\mathrm{Ae} \mathrm{e}^{\wedge}(-6400 \mathrm{t})$

3. For $R=500 \Omega$, calculate the roots of the characteristic equation, showing the value of $\boldsymbol{\alpha}$ and $\boldsymbol{\omega} \mathbf{d}$ and write an expression for VC(t). Use PSPICE to do transient analysis of the circuit, show $\mathrm{VC}(\mathrm{t})$, and measure $\boldsymbol{\alpha}$ and $\boldsymbol{\omega} \mathbf{d}$ using cursors as shown in figure 5.7.
$\boldsymbol{\alpha}=\mathrm{R} / 2 \mathrm{~L}=1000 \quad \mathrm{~W} 0=6400$
W0 $>\boldsymbol{\alpha}$ the system is under damping
$\mathrm{Wd}=\left(\mathrm{W} 0^{\wedge} 2-\boldsymbol{\alpha}^{\wedge}\right)^{\wedge} .5=6320$
$\mathrm{Vc}(\mathrm{t})=3+\mathrm{e}^{\wedge}(-1000 \mathrm{t})(\mathrm{Acos} 6320 \mathrm{t}+\mathrm{B} \sin 6320 \mathrm{t})$

$\tau=t b-t a / \ln (V a-V o(\infty) / V b-V o(\infty))$
$\mathrm{Tb}=1.5 \mathrm{~ms} \quad \mathrm{ta}=0.5 \mathrm{~ms}$
$\mathrm{Va}=4.8 \quad \mathrm{Vb}=3,65 \quad \mathrm{v}(\mathrm{inf})=3 \mathrm{~V}$
$\tau=0.97 \mathrm{~ms}$
$\boldsymbol{\alpha}=1 / \tau=1030$
$\mathrm{Wd}=2 \pi / t b-t a=6300$
Part D: Step response of second-order parallel RLC circuit
For the circuit of Figure 5.13:

Figure 5.13
1 . For $\mathrm{R}=4 \mathrm{k} \Omega$, calculate the roots of the characteristic equation showing the value of $\boldsymbol{\alpha}$ and $\boldsymbol{\omega} \mathbf{d}$. Write an expression of VC(t$)$. Use PSPICE to do transient analysis of the circuit, show VC(t), and measure $\boldsymbol{\alpha}$ and $\boldsymbol{\omega} \mathbf{d}$ using cursors as shown in figure 5.7.

$$
\boldsymbol{\alpha}=1 / 2 \mathrm{RC}=1250 \quad \mathrm{~W} 0=10000
$$

W $0>\boldsymbol{\alpha}$ the system is under damping
$W d=\left(W 0^{\wedge} 2-\boldsymbol{\alpha}^{\wedge} 2\right)^{\wedge} 0.5=9950$
$\mathrm{Vc}(\mathrm{t})=\mathrm{e}^{\wedge}(-1250 \mathrm{t})^{*}(\mathrm{~A} \cos 9950 \mathrm{t}+\mathrm{B} \sin 9950 \mathrm{t})$

$\tau=t b-t a / \ln (V a-V o(\infty) / V b-V o(\infty))$
$\mathrm{Tb}=0.8 \mathrm{~ms}$ ta $=0.15 \mathrm{~ms} \quad \mathrm{Va}=0.6 \mathrm{~V} \quad \mathrm{Vb}=0.3 \mathrm{~V}$
$\tau=0.93 \mathrm{~ms} \quad \boldsymbol{\alpha}=1066$
$\mathrm{Wd}=2 \pi / t b-t a=9700$
[)
2. Calculate the critical resistance RC that will result in equal roots ($\mathrm{S} 1=$ $\mathrm{S} 2=-\quad$ and write an expression for VC(t$)$. Use PSPICE to do transient analysis of the circuit and show $V C(t)$.
$\mathrm{W} 0^{\wedge} 2=\boldsymbol{\alpha}^{\wedge} 2$
$\mathrm{Rc}=(\mathrm{L} / 4 \mathrm{C})^{\wedge} .5=500 \mathrm{ohm}$
$\alpha=10000$
$\mathrm{Vc}(\mathrm{t})=\mathrm{Ae}^{\wedge}(-10000 \mathrm{t})$

For $R=150 \Omega$, calculate the roots of the characteristic equation and write an expression for $\mathrm{VC}(\mathrm{t})$. Use PSPICE to do transient analysis of the circuit, and show $\mathrm{VC}(\mathrm{t})$.

$$
\begin{aligned}
& \boldsymbol{\alpha}=1 / 2 \mathrm{RC}=33333 \quad \mathrm{~W} 0=10000 \\
& \boldsymbol{\alpha}>\mathrm{W} 0 \quad \text { the system is over damped } \\
& \mathrm{S} 1,2=-\boldsymbol{\alpha}++_{-}\left(\boldsymbol{\alpha}^{\wedge} 2-\mathrm{W} 0^{\wedge} 2\right)^{\wedge} 0.5 \\
& \mathrm{~S} 1=-1535 \quad \mathrm{~S} 2=-65130 \\
& \mathrm{Vc}(\mathrm{t})=\mathrm{A} \mathrm{e}^{\wedge}(-1535 \mathrm{t})+\mathrm{B} \mathrm{e}^{\wedge}(-65130 \mathrm{t})
\end{aligned}
$$

